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1 Introduction 

Measurement and Verification (M&V) refers to the process of using data in combination with some form of 
modelling or calculation to estimate energy, cost and/or emissions savings due to a site upgrade such as 
equipment replacement or control system change. Savings are estimated and not directly calculated because 
the counterfactual case (i.e., the energy use of the site without the upgrade) is hypothetical, and so cannot be 
directly measured. 
 
Traditional M&V approaches include use of equipment energy use measurements combined with engineering 
calculations, monthly analysis based on energy bills, regression analysis applied to energy meter data, and 
calibrated building envelope energy simulations to perform a one-time savings analysis for a specific upgrade or 
‘intervention’. The most common application for traditional M&V is to quantify savings from such interventions 
to qualify for incentives in energy efficiency schemes. 
 
This review focuses specifically on the status and challenges of M&V2.0 or ‘Advanced M&V’ (terms used 
interchangeably here). According to Granderson & Fernandes (1) M&V2.0 is “increasingly understood to refer 
to the use of automated analytics in combination with higher granularity data to quantify project energy savings”. 
The use of automated data feeds and semi or fully automated analysis aims to reduce the overall M&V 
transaction cost and hence make assessments of smaller energy upgrades more feasible. However, the 
combination of automation and higher resolution data (hourly or sub-hourly) opens the possibility for 
continuous rather than once-off application of the M&V method enabling use cases such as regular performance 
monitoring, reporting, and benchmarking as well as automated anomaly/fault detection. These ongoing 
applications may provide greater value to a site than once off savings estimates from a specific intervention.  
 
Use of M&V methods to quantity energy savings is codified in regulations in numerous jurisdictions around the 
world including across Europe, the United States and Australia. Most regulations refer to the International 
Performance Measurement and Verification Protocol (IPMVP) (2) which is discussed further in Section 3. In 
Australia, the NSW Energy Efficiency Scheme (ESS) references IPMVP for general guidance under the Metered 
Baseline Method (MBM) (3)  as well as the Project Impact M&V Method (4) while the non-mandatory guide to 
the Victorian Energy Upgrades program (VEU) (5) also mentions IPMVP as a source of further information. In 
SA the Retailer Energy Productivity (REPS) scheme (6) references both the NSW and Victorian M&V methods. 
While most other states and territories have some form of energy efficiency incentive scheme, they are based 
on financial incentives typically provided at the point of sale for products deemed eligible, hence they do not 
reference an M&V approach. Hence in this report, the primarily source of authoritative information or guidelines 
on M&V analysis is taken to be the IPMVP.  

While IPMVP, and in particular the associated IPMVP Uncertainty Assessment Guide (7) in combination with the 
ASHRAE 14 Guideline (8) which is referenced in several places, provide a good basis for applying an M&V method, 
neither was written specifically with automated and high-resolution data analysis (i.e. M&V2.0) in mind. The 
recent IPMVP White Paper on advanced M&V (9) discusses four current challenges with applying M&V2.0 in a 
generic way to any site. These are; handling of non-routine events (‘site-level changes’), calculating savings 
uncertainty, dealing with difficult to model buildings or sites (so called ‘bad-buildings’), and use of models for 
calculating aggregated savings across multiple sites.  

Given here the focus is on M&V applied to individual sites, we do not consider the use of aggregate M&V models. 
Instead, an additional challenge is specifically identified which is use of net (billing) meter data in the presence 
of on-site generation. This is expected to be critical issue by itself even though it could be considered to fall 
within the general challenge of ‘difficult to model’ buildings. Thus, we consider the four key issues facing site 
level M&V are: 
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i) Use of net metering for M&V analysis where onsite generation is present. Given the wide-spread 
availability of relatively good quality, high frequency data from net interval (billing) electricity 
meters, it is tempting to use this data directly in an M&V analysis. However, since M&V is based on 
an analysis of energy consumption1, the presence of any onsite generation means that use of the 
net meter data directly, without accounting for generation (for example, by installing a separate 
generation meter) is, strictly speaking, incorrect. For example, Crowe et al. (10) applied M&V analysis 
to interval meter data for 137 commercial buildings and found that, of the 6 buildings where the 
baseline model failed to fit the data, 5 failed due to the presence of onsite PV generation. Further 
work is required to determine the extent to which the presence of onsite generation (and storage) 
can be tolerated in data used to perform M&V analysis including the impact on savings uncertainty. 

ii) Handling of non-routine events. Non-routine events (NRE) are changes to a sites energy use that 
are not accounted for by the M&V model. That is, they occur when some unexpected event occurs 
or when a factor that influences energy consumption that is expected to be fixed (a so-called ‘static 
factor’ (8)) changes.  As discussed by several authors (11) (12) (13), automatically identifying potential 
NRE from the energy data alone and distinguishing them from routine energy use is challenging but 
not insurmountable. Developing a self-contained M&V2.0 application with a semi-automated 
process (whereby a user can be guided and prompted to provide additional information and/or 
confirmation where necessary, and where the program implements the necessary adjustments in a 
reliable way), is more difficult and will require significant development, testing and refinement.  

iii) Quantification of model uncertainty & accuracy. A core component of any M&V analysis is 
calculation of the uncertainty of estimated savings. While IPMVP and ASHRAE 14 describe methods 
for calculating uncertainty they are based largely around daily or monthly M&V analyses. As 
discussed by Touzani et al. (14), when applied to higher resolution (hourly) models the suggested 
uncertainty estimate approaches are approximate only and tend to overstate model accuracy. 
Hence, further work is required to develop accurate uncertainty characterisation approaches that 
can be deployed regardless of model formulation and that also factor in the influence of any non-
routine-adjustments applied to the base model. 

iv) Dealing with difficult to model sites. For some sites, standard model variables such as weather and 
time are insufficient. In the best case, additional variables may be required to create a model with 
sufficient accuracy (noting though that these variables may not have been included in the M&V 
measurement plan). In the worst case, the energy use variability may be ‘intrinsic’ to the site (for 
example behavioural) and cannot be modelled at all at a given time resolution.  For example, a study 
by LBNL (15) applying hourly M&V models based on interval meter data from over 48,000 buildings 
found that, for office buildings, the models met the minimum performance criteria only 29% of the 
time (although 69% of large office buildings met the criteria). Measures that can quickly identify 
sites where automated M&V processes may fail, or where lower resolution (longer time interval) 
models are required, are needed to avoid unrealistic expectations and to enable timely assessment 
of the proposed M&V plan.  

Central to each of the above four challenges is the question of the extent to which the M&V2.0 analysis can be 
fully automated, and, if not, the conditions under which intervention by an M&V expert is required. Although the 
2020 EVO White Paper (9) anticipated an upcoming advanced M&V guide to be published by EVO in 2020 which 

 

 
1 Notwithstanding the use of M&V to calculate peak demand which is generally related to net import of power from the electricity grid. 
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would provide guidance on these issues, no publication was available at the time of writing (August 2023) 
suggesting that further work to is still needed to address these challenges. 

The remainder of this report provides; a brief overview of M&V2.0 in demand response applications (Section 2); 
a review of literature including key standards, guidelines and M&V algorithms and the extent to which the M&V 
analysis has been automated (Section 3); a description of the DCH M&V algorithm developed by CSIRO (Section 
4); and finally a more detailed exploration of the current challenges as identified above (Section 5).    
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2 M&V2.0 for demand response 

M&V algorithms may be used to calculate long term demand reduction resulting from equipment upgrades or 
removal. The primary motivation in this case is for estimating bill savings, though the demand savings may also 
be of interest to regulators or electricity grid operators. Here the relevant demand reduction may correspond 
to a particular time window and/or interval (for example half-hour intervals, or workdays during the evening), in 
which case the M&V model would ideally have a short enough time interval to resolve the period in question. 
ASHRAE 14 (8) outlines both energy and demand reduction procedures such as the application of representative 
factors to estimate 24-hour demand profiles from daily or longer interval data (18) and use of 90th percentile 
monthly demand to estimate monthly peak demand. Estimation of single (peak) events, for example for 
determination of a 12-month rolling peak demand for a ratcheting capacity charge calculation are likely to be 
problematic for any M&V method due to the dependence on single events.  

Automated M&V2.0 algorithms designed to calculate long term energy and demand savings can also be used to 
calculate baseline electricity which can be used to calculate avoided electricity use through activation of short-
term DR actions (17). In this application, baselines can be used for managing market operations, for example 
serving as forecasts of ‘usual’ operation, and/or for settlement (i.e., providing payments for provision of DR 
services). Given the significant attention at present in the closely related topic of grid interactive buildings and 
demand response (DR) (16), here we focus on this second application of M&V algorithms involve demand 
estimation. 

In a short-term demand response estimation application, the M&V algorithm is used to construct the baseline 
model generally from whole of site meter data, and the model estimates are then compared with actual 
measurements to quantify the DR amount. In contrast to M&V for energy consumption assessment, M&V for 
demand response may/ may not be concerned with net energy flow to the grid, hence ‘behind-the-meter’ 
generation may need to be included in the analysis.  

Most DR mechanisms that have been implemented around the world incorporate baseline models that are 
combined with measurements to calculate the reduction in load provided by the demand response device (see 
for example (18)). Most of these schemes employ relatively simple baselining approaches that use some 
combination of averaging of historical electricity demand on reference days either with or without an offset or 
correction factor to account for demand immediately prior to the DR event. Although IPMVP briefly mentions 
M&V for demand savings, no detailed methodology is given. A number of studies have been conducted 
comparing regression-based baseline methods as used by many M&V2.0 algorithms with these simple baseline 
approaches (18) (19) (20) (21). Most have found that the simpler approaches perform similarly or better while 
requiring less data and being easier to implement. The latter being a critical consideration for large scale 
implementation.  

In Australia, the Demand Response Mechanism (WDRM) commenced in 2020 and allows ‘large’ customers 
(>100MWh/year depending on jurisdiction) to participate in a demand response market (22). Eligible sites (or in 
certain cases aggregations of sites) provide price-volume bids for demand reduction as ‘Wholesale Demand 
Response Units’ in units of integer MW and are dispatched by the market operator in a similar way to large scale 
generators and scheduled loads. Settlement is calculated based on the estimated DR which is calculating by 
comparing the metered electricity with the baseline estimate. Currently only 1 type of baseline methodology 
(CASIO10) is accepted (with four variants) in the scheme (23) and so sites where the load is highly variable or 
has a significant weather dependence may not be eligible. An additional factor is that the baseline criteria is 
applied per site, as opposed to at the aggregate level which increases stringency. AEMO provides a calculator 
tool to determine if a site is likely to meet the baseline model eligibility criteria (24).  

Recently a new DR market mechanism, ‘Schedule Lite’ has been proposed (25). This incorporates two models; 
the ‘visibility’ model and the ‘dispatch’ model. Neither specifically uses baselines to estimate DR. Instead, 
aggregators of demand response capacity (termed ‘traders’) provide forecasts of baseline demand coupled with 
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either indicative (in the case of the visibility model) or actual price-volume bids for DR amounts. In the ‘dispatch’ 
model the bids are used in the formal dispatch process, in the ‘visibility’ model the bids are used to enhance the 
market operator’s visibility of flexible demand and hence improve forecasted demand.  

While baseline models are not specifically required, the forecasts of available capacity will presumably need to 
be based on some sort of baseline model combined with estimates of available DR corresponding to specific 
market prices. A compliance process run by the market operator will ensure that these forecasts match actual 
metered electricity demand. Critically it is proposed that the scheme is not restricted to large customers, and 
that the forecasts are only required for the aggregated DR of many small customers. This suggests that M&V2.0 
algorithms might be suitable for use as aggregate load forecasting tools under such a mechanism, and some 
studies in the literature have evaluated the suitability of M&V2.0 algorithms for aggregate or portfolio estimates 
of consumption based on site level metering (26) (27) (28).  The suitability of different M&V algorithms to model 
the baseline site load and/or the load variations under different types of demand response is an open research 
question. 
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3 Existing literature 

A detailed review of the M&V literature is beyond the scope of this document. Instead, here an overview is given 
of key guidelines related to M&V2.0, a description of different algorithms and tools that have been proposed, 
and a discussion of automation in the context of M&V2.0. Further information may be found in the cited 
references.  

3.1 Guidelines 

The principal guideline for M&V practitioners is the International Performance Measurement and Verification 
Protocol (IPMVP). First published in 1997, available at no cost and continually updated, it consists of several 
separate documents including Core Concepts (2), the Uncertainty Assessment Guide (7), the Application Guide 
for non-routine events (29), and the Renewables Application Guide (30) amongst others. IPMVP makes limited 
references to ASHRAE Guideline 14 (8) which provides more technical details in certain areas but was last 
updated in 2014 and was written largely from a conventional M&V perspective.  

In the US, the Federal Energy Management Program (FEMP) has published a guideline for applying M&V (31) to 
calculate savings. The FEMP document, first published in 2000 was aimed to provide more specific guidance 
given that at the time the IPMVP lacked the necessary detail needed by practitioners. More recent versions of 
IPMVP have largely addressed this gap. Also in the US, the Uniform Methods Project (UMP) (32) is a 1000+ page 
document that provides individual guidelines, methods, and examples for applying M&V for specific types of 
energy efficiency upgrades. However, the UMP does not cover advanced M&V, for example mentioning use of 
interval meter data only in the context of program level M&V across many sites (See Chapter 8: Whole-Building 
Retrofit with Consumption Data Analysis Evaluation Protocol).    

In Australia the Australasian Energy Performance Contracting Association published a best practise guide to 
M&V in 2004 (33). This document was based on early versions of IPMVP, ASHRAE 14 and FEMP, and provided a 
good overview but has been largely superseded by later versions of the IPMVP. As noted above, the NSW (3) (4) 
(34) and VIC government (35) provide guidelines on how to apply specific M&V methods to satisfy their scheme 
requirements. For the case of non-routine adjustments (34) provides detailed information on when and how to 
apply adjustments.  

3.2 Algorithms and tools 

A significant body of work exists in the literature on M&V2.0 algorithms, and there are numerous free and 
commercially available M&V tools targeting different applications and with different features. For example, 
Granderson & Fernandes (1) reviewed 16 advanced M&V tools and categorised them by multiple features 
including target users, application area, method, input data, algorithm and metrics, approach to uncertainty 
calculation, adjustable parameters, and code transparency. The majority of tools apply some form of linear 
regression model, though machine learning approaches were also common. Surprisingly only approximately half 
included some form of uncertainty calculation. Application areas were mostly commercial though several 
considered residential or industrial as well. Approximately half had an open code base with the rest preferring 
to keep the algorithms proprietary. 

Six of the tools involved the tool vendor regularly assessing the actual M&V model for fitness and suitability 
which may indicate an analysis workflow that is not fully automated or failsafe. A recent updated work (9) 
published by EVO reviewed 4 additional tools each of which includes a linear model as the default option.  

In the scientific literature, many different types of M&V algorithms have been described and evaluated. Grillone 
et al. (36) review the literature and categorise data-driven M&V methods into i) statistical, ii) machine learning, 
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and iii) Bayesian methods. The most commonly applied linear regression methods; time-of-week and 
temperature (TOWT) and change-point fall under the category of statistical methods, while various types of 
machine learning (artificial neural networks, support vector machine, random forecast and gradient boosting 
machines) have all been applied to M&V. Alrobaie and Krarti (37) also recently reviewed data driven approaches 
for M&V and concluded that for non-linear methods there is no general framework or guideline which may be 
limiting their uptake in practical M&V tools.   

In comparison to machine learning and Bayesian methods, the linear statistical models are relatively simple to 
apply, computationally fast, easily interpretable and have been shown by several authors to give good results 
(38) (39) and also results comparable to or better than more advanced methods (14) (40) (41) (42) (43).  

3.3 Automation 

As noted above, automation is a central aspect of M&V2.0. Here it is proposed that the extent of automation in 
an M&V workflow can be categorised according to Table 1. Here a distinction has been made between data 
automation and analysis automation.  The former relates to the form and method of supplying input data to the 
M&V analysis, including the meta-data that provides the linkage between data and model. The latter relates to 
the M&V analysis itself and the extent to which an expert user (for example the tool vendor, the tool user, or a 
3rd party) is required to choose analysis options, interpret results and to ensure that the analysis is valid and as 
accurate as possible (or at least sufficiently accurate for the intended purpose).  Any given M&V application may 
have one level of data automation and a different level of analysis automation - which we denote using the short-
hand notation D1A3 (i.e. data automation level 1, analysis automation level 3).  

 
Table 1 Summary of M&V2.0 levels of autonomy  

Automation 
level 

Data automation Analysis automation 

Level 1 Input data must be supplied pre-processed 
(cleaned, synchronised and/or filled). User 
must upload data file(s) and specify all 
configuration options. 

M&V specialist user must interpret model validity & results as well as 
design & initiate new analysis if required. Minimal model diagnostics 
and checks (for example standard metrics such as R2, CVRMSE only). 

Level 2 Raw input data can be supplied. User must 
upload data file(s) and specify most 
configuration options. 

Detailed model diagnostics are provided with limited suggested 
changes to analysis options based on default model performance. M&V 
specialist required to initiate (configure) and run new analysis. 

Level 3 Data is obtained from an automated service 
(e.g., database, API, cloud service). All 
processing is done by the application.  
Minimal configuration options required (for 
example specify data linkages & site 
location). 

Natural language processing of outputs & application diagnostics are 
reported & interpretable by a non-specialist. 

Suggested analysis changes provided to user for review. Analysis 
automatically reruns based on user selection.     

Level 4 Data is obtained from an automated service. 
Semantic models are used to provide data 
interpretation & linkage. Analysis across 
multiple sites can be done with no specific 
user setup.  

Application automatically self-diagnosis model performance. (e.g., non-
routine events are automatically identified and accounted for. Different 
model options are automatically trialled if the initial model does not 
meet specifications.) Invalid model results cannot be provided as final 
outputs. 

 

Based on the literature reviewed here, no existing M&V applications have been identified that provide full 
automation (D4A4). For example, Ke et al. (44) discuss a platform for automated M&V however, it requires users 
to upload data and choose model terms and options suggesting only D2A1 level automation. The vast majority 
of applications described in the review by (1) use D2 level data automation or less and A1 or A2 analysis 
automation. As discussed below, the current CSIRO-DCH M&V application uses D3A2 automation at present, 
though plans are to extend this to D4A2 shortly and D4A3 in the medium term. Moving to self-diagnostics and 
fully automated analysis using semantic models is the focus of current and future research.   
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4 DCH CSIRO M&V algorithm 

4.1 Overview 

An M&V2.0 algorithm (referred to here as MVApp) has been developed by CSIRO based on an extended TOWT 
statistical model. At present, this algorithm runs from command line (i.e., does not have a user interface) and 
optionally connects to the DCH (Data Clearing House) cloud platform for receiving interval meter and weather 
data and writing program outputs. It can also be run without a connection to the DCH platform, for example 
using data from a local source such as a csv file or other database. 

The algorithm can be divided into a sequence of steps as summarised in Figure 1. An analysis begins with the 
user creating an input configuration text file (JSON formatted) which can be used to specify non-default 
program configurable options and settings as well as key inputs such as the start and end dates for the pre & 
post intervention periods (referred to as the ‘baseline’ and ‘reporting’ periods respectively). Work is currently 
underway to eliminate the requirement for this configuration file by using the semantic building model to 
provide building meta-data (for example, location and key data sources) and when default analysis options are 
used. It would also be possible for a UI to be created that automatically creates this configuration file based on 
user selections.  

Once MVApp is run with a configuration file the application first fetches data from the data source and then 
cleans, processes, and checks the data for suitability. If the data is deemed valid, the cleaned data version is input 
to the baseline model training algorithm. Normalised savings are then computed, and output quantities and 
uncertainties are calculated. Further details are given below.  

Outputs are written in a variety of formats including monthly and daily summary csv’s, a Word® report, raw data 
files and data-stream outputs written back to the DCH platform. The complete process from initialisation to 
results output takes approximately 30 seconds on a desktop computer for an analysis using 2 years of half-hourly 
data for one site. 

 

Figure 1 Overview of CSIRO M&V2.0 (MVApp) analysis sequence 
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4.2 Algorithm 

4.2.1 Interval model 

The interval model is typically used with an hourly time-interval, although both longer and shorter time-interval 
may also be used. The core algorithm is based on weighted piecewise continuous multi-linear regression for the 
overall site consumption 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖  as given by Eq. 1 and described in  (45).  

The baseline period is divided into 𝑁𝑁 periods, each with a time duration (excluding missing data) of 30 days by 
default. A separate model is fit for each period p and weighting factors 𝑤𝑤𝑝𝑝,𝑖𝑖 used to combine the predictions 
from each model for a given time interval i. The method used to determine the weighting factors is not covered 
here.  

Continuous piecewise temperature levels are used to represent the variation of consumption with temperature 
after the effect of time has been excluded.  As shown in Figure 2, the piecewise regression component consists 
of  𝑛𝑛𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜=1 + 1 coefficients 𝛽𝛽𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜=1 for occupied time intervals and 𝑛𝑛𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜=0 + 1 coefficients 𝛽𝛽𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜=0 for 
unoccupied time intervals. Adaptive temperature levels are determined based on the entire baseline period data 
using a ‘leap-frog’ method designed to ensure a minimum amount of data in each level but with relatively uniform 
spacing and limits applied to the maximum number of levels. 

 

Figure 2 Schematic showing piecewise continuous temperature changepoints and associated coefficients 

By default, coefficients 𝛼𝛼𝑗𝑗 are determined for each hour interval of the week. Different options are available for 
the number of coefficients which is beyond the scope of this overview. The theoretical maximum number of 
coefficients that can be fit is 336 (24x7x2) (in the most general case each interval can be either occupied or 
unoccupied), however a more typical number is around 168 since each interval of the week is usually assigned 
as either occupied or un-occupied. Coefficients are not fit for intervals with insufficient data. In cases where an 
interval-occupancy combination has multiple data points, but the same interval and opposite occupancy 
combination has zero or 1 data point, only the former coefficient is fit and used for predicting both cases. 

An optional additional coefficient 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜=1 can be fit for all occupied intervals that fall on public holidays. This 
applies an additional scaling factor that can be useful to account for sites with less than usual but above baseline 
consumption on public holidays. By default, this coefficient is included. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 = � 𝑤𝑤𝑝𝑝,𝑖𝑖 �𝛼𝛼𝑗𝑗 − 𝛽𝛽0,𝑜𝑜𝑜𝑜𝑜𝑜 min(𝑇𝑇1 − 𝑇𝑇𝑖𝑖 , 0)
𝑝𝑝

+ � 𝛽𝛽𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑒𝑒𝑚𝑚(𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑙𝑙 , 0) + 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜=1ℎ𝑖𝑖 + 𝜂𝜂𝐺𝐺𝑖𝑖
𝑛𝑛𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜 

𝑙𝑙=1
�
𝑝𝑝

 

Eq. 1 

Te
m

pe
ra

tu
re

 d
ep

en
de

nt
 

co
m

po
ne

nt
 o

f c
on

su
m

pt
io

n 

Ambient temperature 

𝑇𝑇𝑙𝑙 

𝑇𝑇𝑛𝑛𝑒𝑒 𝑇𝑇1 
𝛽𝛽0,𝑜𝑜𝑜𝑜𝑜𝑜 

𝛽𝛽𝑛𝑛𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜 

𝛽𝛽𝑙𝑙,𝑜𝑜𝑜𝑜𝑜𝑜 



14  |  CSIRO Australia’s National Science Agency 

For the special case where generation data is unavailable and where the only onsite generation is from PV arrays, 
it is possible to fit the model directly to net metering data. Enabling this option includes an additional coefficient 
𝜂𝜂 in the model which is proportional to an irradiance value 𝐺𝐺𝑖𝑖 for the given interval. If DCH is used for input data, 
global irradiance data is automatically fetched for the site location. (In general, for standard fixed mount PV 
panels it is sufficient to use global horizontal irradiance data even though panels may be mounted at a significant 
incline.) Note that, as outlined in Section 5.1, fitting of a model to net meter data, depending on the site and data, 
may not result in a valid model. Calculation of savings uncertainty at various resolutions (e.g., daily, monthly) is 
performed using the methods outlined in ASHRAE 14 (8) or optionally using cross-validation. 

4.2.2 Daily model 

MVApp includes a daily analysis model that fits an equation of the form given in Eq. 2 to the daily energy 
consumption (or net energy). Here 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑  and 𝐻𝐻𝐶𝐶𝐶𝐶𝑑𝑑 are the daily cooling and heating degree days respectively 
and are calculated using a dynamic (hour of the day dependent) temperature level. The coefficients a and b in 
Eq. 2 are varied and used to fit different baselines models with the best model chosen based on Bayes 
Information Criteria. 𝐺𝐺𝑑𝑑 is the daily irradiance which is optionally used in the case where PV generation is 
included in the meter data and ℎ𝑑𝑑 and 𝑤𝑤𝑤𝑤𝑑𝑑  are binary flags indicating public holiday days and weekends 
respectively. 

Equation 2 is fit using daily quantities that are calculated from the same interval data that is used by interval 
analysis model.  

4.3 Data and model checks 

Prior to fitting the baseline model a range of automated data checks are applied to the processed input data 
streams to identify potential issues. These include missing data, sufficient data, not-a-number, outlier and range 
checks, a periodicity check, time related checks, checks for sequences of repeated values and unique values, as 
well as monotonicity, trend, and autocorrelation checks. Depending on the test and computed result the 
application may return warnings or errors which can be configured to cause the analysis to be aborted. 

Once the baseline model has been trained on the data several model checks are also performed. These include 
checking for daily outliers, checking for entire months that are under/over predicted, linear and seasonal trend 
checks on the model error, checks on the model fitting parameters and a check on the estimated cumulative 
saving trend. Currently these checks are configured to provide warnings to the user only. Future work may 
involve implementing automated processes and/or guided workflows to manage these warnings with minimal 
user input.  

4.4 Outputs 

MVApp calculates energy, cost and emissions savings from grid electricity use. Cost savings are calculated using 
wholesale spot prices and/or time of use energy tariffs as supplied in the configuration file and may/may not 
include feed-in credits. Greenhouse gas emissions can be calculated either using fixed emissions factors or, if 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑 = 𝛽𝛽1ℎ𝑑𝑑 + 𝛽𝛽2𝑤𝑤𝑤𝑤𝑑𝑑 + 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 + 𝛽𝛽4𝐻𝐻𝐶𝐶𝐶𝐶𝑑𝑑 + 𝛽𝛽5𝐺𝐺𝑑𝑑 

𝑇𝑇𝑇𝑇 = 𝑒𝑒 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛(𝜋𝜋(ℎ − 7) 12⁄ ) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑 = �max (𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑇𝑇, 0) ,𝐻𝐻𝐶𝐶𝐶𝐶𝑑𝑑 = �max (0,𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑙𝑙) 

Eq. 2 
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using the DCH as the data source, time-varying and region-specific emissions factors, and can also be configured 
to calculate avoided emissions (emissions reduction resulting from net export of energy to the grid). 

All outputs of the program are saved for later inspection. This includes raw and cleaned data, total, monthly, 
daily and interval results for the baseline and analysis period, model performance metrics (such as R2, CVRMSE, 
NMBE), data and model check results and the baseline model itself. Monthly and overall totals can be computed 
either with/without extrapolation for missing data depending on the configuration options. 

Detailed results are provided in both csv format, various graphs are produced and saved as image files, and a 
detailed Word® report is automatically generated. Program logging information which includes any warning or 
error messages is saved to a text file. Timeseries results can optionally be saved to DCH for later analysis. An 
example Word® report is provided as an appendix to this report.  

4.5 Validation 

The DCH MVapp has been validated using the Efficiency Valuation Organisations online EVO-portal (39) (46). 
This consists of 2 years of hourly electricity and temperature data from 367 buildings across North America. One 
year of data is supplied to code developers who run their M&V algorithm to generate baseline models and 
predictions for the second year of data (which is not provided to the application or developer). The portal 
automatically calculates model perform metrics (CVRMSE and NMBE) based on a comparison of the model 
predictions for the second year of data.  

At the time of writing, 93 models had been submitted to the portal with summary performance results as shown 
in Figure 3. The DCH M&V application achieved a median CVRMSE score of 33.75% and NMBE score of 0.04% 
placing it in the top 5% of all models and very close to the top performing model. Note that, unlike the 
requirements listed in M&V standards and guidelines (see Table 7) these performance metrics are calculated on 
a separate testing data-set, and not on the data used to train the models. Hence, the reported CVRMSE values 
in particular are inherently higher than those calculated for the fitted models. 

 

Figure 3 Screenshot of all M&V applications with results shared on the EVO-portal (as of 26th July 2023). DCH-M&V application 
results as indicated 

 

DCH M&V 

CVRMSE=33.75%
NMBE=0.04% 
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5 Challenges and limitations 

This section discusses in detail each of the current challenges in the path toward implementing autonomous 
M&V2.0 for energy efficiency applications as identified in Section 1. It includes new analysis conducted 
specifically for this project. Challenges specially relating to Demand Response applications of M&V2.0 are not 
considered here. 

5.1 Net vs gross metering  

Low-transaction cost is a central potential benefit of M&V2.0 and this hinges to a certain extent on the ability to 
use readily available high-resolution metering data. Utility billing interval meters are the most common form of 
metering and are generally considered to have good accuracy and reliability (2). However, if on-site generation 
is present, then this is also likely to be included in the electricity measured by the utility meter (which typically 
measure net electricity purchased from the grid). M&V on the other hand, is based on an analysis of electricity 
consumption.  

References in the literature, guidelines and standards refer exclusively to M&V analysis of energy or electricity 
consumption. Section 12.7 of the most recent version of IPVMP clarifies that: “energy from these [on-site 
generation] systems will need to be accounted for if they impact the energy consumption, generation or costs 
within the measurement boundary” (2) which implies the use of additional metering to separately meter the on-
site generation.  However, in general the literature is not clear on this topic. For example, previous versions on 
IPMVP did not mention onsite generation, ASHRAE 14 makes no mention of net metering or onsite generation, 
the NSW PIAM&V guideline (Section 5.5.1) states that the ‘addition of on-site generation’ should be considered 
a NRE requiring submetering, though this does not apply to existing generation, and the VIC VEU (35) appears 
to require separate metering to calculate consumption savings and renewable energy savings for example via 
the requirement that the “Measurement boundary must include”… “every product co-metered with energy 
consuming products”.  

Separate metering of on-site generation is of course possible, but may require installation of one or more 
additional meters, semantic models to provide meter hierarchies and relationships between meters, and 
methods to combine and process multiple electricity data streams. Requiring new meter installations is also likely 
to significantly extend the duration of the M&V project since, by itself, existing utility data would be insufficient 
to establish a baseline.  

For projects where substantial savings are expected this may not be a prohibiting factor, however for smaller 
sites the cost, time and effort may be unjustified. Moreover if, for example, the overall generation is small 
compared to consumption then a sufficiently accurate result may be obtained from analysis of the net meter 
data alone and hence it might be simply unnecessary to include generation metering and all that it entails. Exactly 
what constitutes small in the context of onsite generation is unknown, and no research in the open literature 
was found on this question. Given the lack of studies on this topic, here an analysis of the impact of running an 
M&V2.0 analysis on net electricity data versus consumption data was performed using data from seven 
commercial (office) sites.  

5.1.1 Commercial site analysis 

Interval and generation meter data for seven commercial sites spread across regional NSW was used for the 
analysis. The sites all have onsite PV generation systems with annual generation ranging from 16% to just over 
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70% of annual consumption. M&V analysis using the DCH MVApp was run with 1 year of baseline data and 1 year 
of reporting data. The same baseline and reporting periods (baseline 01/03/2021 to 28/02/2022 and reporting 
01/03/2022 to 28/02/2023) were selected for each site without any assessment of the presence of non-routine 
events in the data. No information on the presence (or not) of energy interventions or non-routine events was 
available. 

The presence of generation meters for each site enabled a comparison of two methods; 

Method 1: MVapp applied to consumption data using both temperature and time related variables (i.e 
.Eq. 1 with 𝜂𝜂 = 0 and Eq. 2 with  𝛽𝛽5 = 0). Consumption was calculated from: consumption = net meter 
data + generation meter data, and 

Method 2: MVapp applied to net metering data directly and with the radiation dependent model term 
activated. 

Analysis was performed using both the interval model and daily models of the MVApp. To examine the effect of 
varying relative generation amount, additional analyses were also run with sub-hourly measured onsite 
generation values scaled up/down by fixed factors to simulate different sized PV generation systems.  

Model performance was assessed using the commonly used metrics CVRMSE (coefficient of variation of room 
mean square error) and NMBE (normalised mean bias error). Given the considerable confusion around NMBE 
and the acceptable limits (47), we focus primarily on CVRMSE <25 as the indicator of model acceptability.  

Interval model results 

Interval model results are summarised in Tables 2 and 3 with sites listed in order of increasing overall generation 
amount as a percentage of overall consumption. Five of the seven sites had acceptable baseline models built 
using the consumption meter data. This decreased to only one of seven sites when the baseline model was 
trained using net meter data in combination with an additional irradiance term in the model.  In terms of the 
calculated saving over the reporting period (noting that there were no known interventions applied), 
consumption and net meter model calculated savings overlapped at least partially for all but one site, although 
mean savings predictions varied considerably. 

Table 2 Summary of interval model performance metrics for consumption and net meter analysis models 

Site Annual 
generation 
percentage 

Consumption model (Model 1) Net meter model (Model 2) 

CVRMSE NMBE Acceptable CVRMSE NMBE Acceptable 

Grafton 15.9 23.2 -0.06 Y 28.5 -0.51 N 

Lithgow 18.7 10.7 -0.14 Y 13.9 -0.14 Y 

Dubbo 21.5 23.3 -0.11 Y 28.7 -0.06 N 

Newcastle 44.1 24.6 -0.17 Y 35.3 -4.71 N 

Griffith 51.8 43.8 -1.11 N 64.3 -7.77 N 

Armidale 56.7 24.2 -0.21 Y 53.5 3.62 N 

Moree 71.3 37.1 -0.05 N 59.0 -8.52 N 
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Table 3 Summary of interval model calculated reporting period savings for consumption and net meter analysis models 

Site Consumption 
model (Model 1) 

Net meter 
model (Model 2) 

Within bounds 

Grafton 4.5% ±1.6% 4.9% ± 1.9% Y 

Lithgow -2.2% ± 1.8% -6.0% ± 2.5% Y 

Dubbo -0.3% ±2.7% 3.8% ± 2.3% Y 

Newcastle 9.7% ± 3.0% 6.1% ± 3.6% Y 

Griffith -20.3% ±7.0% 3.5% ± 7.6% N 

Armidale 4.6% ±2.4% 6.6% ± 2.9% Y 

Moree -15.0% ± 5.8% -5.7% ± 6.5% Y 

 

For each site, the relative generation amount (ratio of annual generation to annual consumption) was also varied 
between 0% (no generation) and 90% by scaling the generation meter data appropriately. Figure 4 compares 
the resultant increase in CVRMSE of the net meter-based model (i.e., CVRMSE_model2 – CV_RMSE_model1) 
versus the generation as a percentage of consumption. Symbols indicate the result corresponding to the actual 
generation for each site while the shaded region shows the range of values for all sites. 

Given that a CVRMSE below 15 is considered a very good model, and a minimum acceptable CVRMSE of 25 is 
cited in several sources (8) (34), the results suggest that generation values up to 30 to 40% of consumption may 
be tolerable in an M&V analysis using TOWT regression models with an irradiance dependent term included. 
However, the consequence of this increase in CVRMSE is a reduction in the predictive power of the model and 
hence an increase in the minimum saving that can be identified (without the additional solar PV metering) with 
a given confidence level.  

 

Figure 4 Increase in CVRMSE between baseline consumption interval model and net meter based interval model as a function of 
relative generation amount 

Daily model results 

Daily model performance results are summarised in Table 4. For the consumption-based model the same five 
sites had acceptable models as per the hourly analysis. However, in contrast to the hourly analysis approach, all 
five of these sites still had acceptable net meter-based models, although the CVRMSE increased in line with the 
increasing generation (Figure 5). In terms of estimated savings, the consumption and net based model estimates 
overlapped for all sites, although again there were differences in the mean estimated savings (Table 5). The 
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increase in CVRMSE (Figure 5) with varying generation amount for each site shows much less effect of increasing 
generation on model performance.  

Table 4 Summary of daily model performance metrics for consumption and net meter analysis models 

Site Annual 
generation 
percentage 

Consumption model (Model 1) Net meter model (Model 2) 

CVRMSE R2 Acceptable CVRMSE R2 Acceptable 

Grafton 15.9 13.8 85.3 Y 16.0 85.3 Y 

Lithgow 18.7 9.7 62.3 Y 11.5 63.1 Y 

Dubbo 21.5 15.1 83.3 Y 17.8 82.8 Y 

Newcastle 41.0 16.7 68.8 Y 23.2 62.6 Y 

Griffith 51.8 31.7 48.8 N 48.8 33.4 N 

Armidale 56.7 15.7 85.3 Y 22.3 86.6 Y 

Moree 71.3 31.5 62.6 N 38.7 58.5 N 

 

Table 5 Summary of daily model calculated reporting period savings for consumption and net meter analysis models 

Site Consumption 
model (Model 1) 

Net meter model 
(Model 2) 

Within bounds 

Grafton 6.1% ±1.7% 7.0% ± 2.0% Y 

Lithgow -2.8% ± 2.4% -6.3% ± 2.5% Y 

Dubbo 1.0% ±2.8% 3.8% ± 2.2% Y 

Newcastle 13.3% ± 2.7% 12.5% ± 2.4% Y 

Griffith -8.5% ±7.9% 2.0% ± 12.3% Y 

Armidale 8.6% ±2.7% 9.5% ± 2.2% Y 

Moree -8.0% ± 6.3% 3.1% ± 6.0% Y 

 

 

 

Figure 5 Increase in CVRMSE between baseline consumption daily model and net meter based daily model as a function of 
relative generation amount 
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Comparison of interval and daily models for use with net meter data 

A comparison of the estimated savings using the hourly consumption, hourly net, daily consumption, and daily 
net models is given in Figure 6. Note that statically significant changes (either savings or energy increases) are 
calculated for several of the sites. However, given that no information was available on the presence (or not) of 
any energy interventions for these sites it is not possible to state whether the estimated savings are the result 
of real measures, changes to site operation or non-routine events. 

Results show that using the daily based model is preferable to the interval model when analysing net meter data 
as the results for the daily and daily net models tend to be in closer agreement with each other than the hourly 
and hourly net models with each other. This is likely caused by the approximate nature of the model term used 
to account for onsite generation as a function of local global irradiance.  

 

Figure 6 Comparison of estimated percentage savings and uncertainty ranges as computed using hourly, hourly net, daily and 
daily net models for seven sites  

As shown in Figure 7 (left) for one particular location, the daily integral global horizontal irradiance is linearly 
correlated with the daily integral PV generation as the cumulative effects of localised shading, collector 
orientation, weather and other unknown effects on generation tends to be smoothed out. However, on an hourly 
scale (Figure 7 right) much more scatter is present. R-squared coefficients of a linear regression applied to hourly 
and daily data (Table 6) show this behaviour is consistent across all sites. The practical effect of this scatter is to 
introduce noise that makes it more difficult for the temperature and time-of-week terms in the model to be fit 
accurately. Inspection of hourly boxplots of the residuals of regression model fit to the hourly data (Figure 8) 
shows a trend of under-estimates in the morning and over-estimates in the middle of the day which is likely due 
to a combination of collector orientation and shading effects. Since the analysis has no access to such 
information for a given site (i.e., we assume it is not available) it is not possible to employ a detailed PV model. 
However, additional simulations were trialled assuming standard collector orientation and tilt to calculate 
irradiance in the plane of the collector. The resulting net meter-based model did not yield any improvement in 
performance (either model metrics or savings estimates).  
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Figure 7 Correlation between daily site generation and daily horizontal irradiance (left) and hourly site generation and hourly 
horizontal irradiance (right) for Armidale site. Dashed lines show fitted linear regression model with zero intercept 

 

Figure 8 Boxplots of hourly irradiance – generation linear regression residual as a function of hour of the day 
 
Table 6 R-squared values of linear regression models fitting hourly and daily site generation to hourly and daily horizontal 
irradiance 

Site Hourly Daily 

Grafton 0.870 0.964 

Lithgow 0.860 0.900 

Dubbo 0.910 0.962 

Newcastle 0.830 0.950 

Griffith 0.865 0.925 

Armidale 0.872 0.938 

Moree 0.871 0.935 

5.1.2 Summary & recommendations 

Although the results above are based on M&V analysis applied to a limited number of sites, they suggest that it 
is possible to perform M&V using net meter data only and achieve a baseline model that meets commonly 
acceptable performance metrics. However, it is strongly recommended that: 
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• If analysis using net meter data is the only option, then a model with daily or longer timescale should be 
used. 

• The baseline model should include a term that models the influence of irradiance (assuming the onsite 
generation is derived from PV). 

• If the overall site generation is more than approximately 30-40% of consumption, additional generation 
meters should be installed so that the M&V analysis can be based on consumption data.  

• The reduction in model predictive power that results from using net meter data should be considered 
along with the desired percentage savings that are expected. 

• If non-PV sources of onsite generation are present, then either additional model terms appropriate for 
that generation type or additional sub-metering are likely to be required.  

Although not considered here, battery storage systems are a special case, and their treatment is likely to depend 
on how the batteries are operated at the site as well as the scope of the M&V project. For example, a small 
battery that never or rarely causes significant net export of power to the grid and that operates on a regular 
schedule of charging and discharging may be able to be ignored (i.e., incorporated into the baseline site load). 
On the other hand, if for example, the battery operation is subject to significant variability or results in a large 
quantity of exported power at certain times then additional metering is likely to be required. A further 
complication is whether the battery operation changes in response to the energy efficiency intervention.  

5.2 Automating non-routine events 

According to IPMVP (29) non-routine events (NRE) are defined as “unexpected changes in energy use within the 
measurement boundary resulting from changes in static factors, which are not accounted for in the energy 
savings calculation and are not related to the targeted energy project”. Further “static factors” are defined as 
“those characteristics of a facility that affect Energy Consumption… that are not expected to change and were 
therefore not included as Independent Variables”, and that “static factors should be recognised and monitored”. 
This definition means that NRE are not simply periods where a model doesn’t fit the data well (these may be 
classed as potential NRE). To be considered NRE these periods must be attributed to some unexpected but 
observed or known changes that occurred at the site.  

Ideally NRE are avoided by anticipating such changes and planning for them (for example by including relevant 
model terms). Managing NRE may involve making ‘non-routine adjustments’ (NRA’s) for example, changing the 
baselining period or using additional sub-models. In some cases, the decision to make no adjustment may be 
appropriate. Adjustments should only be made for NRE that are confirmed to not be part of normal operation, 
that are not due to the intervention being evaluated, and that have a significant impact on the estimated savings. 

If identification of the cause of NRE is required before adjustments are made, how can automated processes 
perform this identification without access to much more information (data) relating to the site operation and 
equipment? As suggested by Touzani et al. (14), the answer is most likely that a ‘human-in-the-loop’ is still 
required. However, through a combination of automated analysis and prompts for user input it may be possible 
to make the processes relatively seamless.  

As discussed by Fernandes et al. (11) and Touzani et al. (12), different types of NRE present as different 
characteristic patterns in the data. Further, they have corresponding NRA’s that may be appropriate. For 
example, an automated M&V application might detect a step-change in energy use over a specific period. It may 
prompt the user with estimated details of the event such as the magnitude of the change, start and end dates, 
whether the effect has a time dependence, and the estimated effect on savings estimates. It may then suggest a 
certain NRA (and require the user to confirm) and/or provide a checklist for the user to run through. The details 
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of any such choices would presumably be automatically recorded by the M&V application and available for 
inspection, for example by regulatory authorities.   

Such a process does not appear to have been included in any M&V2.0 applications at present, and there are no 
standardised approaches that can be readily implemented to automate NRA’s. However, the IPMVP Guide to 
Non-routine Adjustments, together with the above cited references, provide a good starting point and there are 
a number of different analysis approaches that have been documented for identifying NRE’s.  

5.2.1 Summary & recommendations 

• Several methods for automatic detection of potential NRE have been documented in the literature. 
However, because site information that is not available to the M&V application is required to confirm 
these as actual (valid) NRE, it is likely that authorisation of NRA will still require a ‘human-in-the-loop’. 

• NRE can be categorised based on their characteristic signature, and targeted technics applied to address 
them. 

• Several references, including the IPMVP, provide good information which could be used to develop a 
guided M&V2.0 process that handles NRE’s. Such a process could use a combination of statistical 
analysis and simplified prompts to the user or checklists to ensure that the application applies 
appropriate methods for the site.  

• It is suggested that all such inputs provided by users be documented by the M&V application and be 
available for inspection. 
 

5.3 Difficult to baseline sites 
M&V analysis for a site requires determination of a baseline energy consumption model that meets certain 
performance criteria. These criteria vary according to the particular scheme or guideline as indicated in Table 7. 
The baseline model must include sufficient independent variables to characterise the variability in consumption 
resulting from changes to these variables, and the remaining uncertainty or unaccounted for variability in the 
model, after accounting for non-routine events, must be sufficiently small. For some sites, it may be difficult to 
develop a baseline model that meets the required performance criteria; these sites are referred to here as 
‘difficult to baseline sites’.  

The underlying principle behind normalisation that is central to most if not all M&V programs is that a reduction 
in energy consumption is, by itself, insufficient to qualify for incentives. That is, energy savings are not ‘counted’ 
if they occur simply because the weather was more mild, fewer occupants were in the building, or less product 
was produced. For example, the NSW PIAM&V scheme requires that “the ACP must ensure that the 
implementation does not result in the reduction of energy consumption by reducing2 production, service, or 
safety”. Examples given for evidence of maintaining service levels include temperature set points meeting 
comfort levels, lighting levels meeting standards, and maintenance of fan flow rates (34). Similarly in Victoria the 

 

 
2 However, energy use reduction through removal of redundant equipment or excessive service levels (e.g. over-cooling in summer, or excessive 
lighting) is allowed according to Clause 5.4 of the Energy Saving scheme Rule: “Note: Reduced consumption of an Eligible Fuel not directly due to 
specific actions to improve efficiency does not qualify as a Recognised Energy Saving Activity. Mild weather, lower production, closing down part of a 
Site, or reducing the quality or quantity of service derived from the use of an Eligible Fuel does not qualify as a Recognised Energy Saving Activity. 
Reducing consumption of an Eligible Fuel where there is no negative effect on production or service levels (e.g. reduction of excessive lighting, removal 
of redundant installed capacity or the installation of more energy efficient equipment) is a Recognised Energy Saving Activity and is not excluded by this 
clause.” (54) 
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VEU states that it is not appropriate to report savings due to “reduce[ing] greenhouse gas emissions by reducing 
production capacity or service levels, unless this is to correct over-servicing (such as excessive lighting or space 
heating)” (35).  As a result, to demonstrate that the baseline M&V model can capture these variations, the 
unexplained variability must be small as quantified via the various performance criteria.  

The most commonly used metric for this purpose is the Coefficient of Variation of the Root Mean Square Error 
(CVRMSE) which is a normalised measure of mean absolute model error. Although normalised, CVRMSE tends 
to be smaller for longer time interval models (i.e., daily or monthly as compared to hourly) given the greater 
fluctuations inherent at shorter timescales. Another criteria used by ASHRAE 14, and the only measure with a 
quantified recommended threshold in IPMVP, is the relative uncertainty in the estimated annual savings. 
However, unlike the CVRMSE, relative savings uncertainty is not solely a property of the baseline model but 
depends also on the post-intervention data. That is, a model with poor CVRMSE could still pass the relative 
savings uncertainty criteria if the energy savings were large due to aggregation of savings over many 
observations. 

Table 7 Minimum performance criteria 

Reference Performance criteria 

NSW PIAM&V (34) CVRMSE < 25% for R2 >=0.5 

CVRMSE < 10% for R2 < 0.5 

t-statistic > 2 for each independent variable 

ASHRAE 14 (8) CVRMSE < 20% (<12 months data) 

CVRMSE < 25% (>=12 months data to 60 months) 

CVRMSE < 30% (>60 months data) 

Uncertainty < 50% of annual savings at 68% confidence 

NMBE < 0.5%3 

VIC VEU (35) Savings discounted if relative precision in annual savings estimate > 25% at 90% confidence 

IPMVP (2) Uncertainty < 50% of annual savings at 68% confidence 

Australian Government 
Best Practise Guide (33) 

R2 > 0.75 

CVRMSE < 25% (12 to 60 months data) 

t-statistic > 2 for each independent variable 

NMBE < 0.005% 

3There is some confusion around this required at discussed by (47). Table 4-2 states <0.005% while Section 4.2.10 states 0.5%. 

 

In addition to the standard model performance metrics (R2, CVRMSE) it is also important to test the standard 
assumptions used in the M&V model. For example, for ordinary least squares regression-based models this 
includes independence and normality of errors and homoscedasticity. Often, moderate violations of the 
standard assumptions can be permitted with minimal effect on the model estimates, however any such tests 
need to be fully automated to avoid requiring specialist statistical expertise.   

For some sites, baseline models fit using standard independent variables such as ambient temperature, time of 
week, day of week and holiday status leave too much unexplained variability. For example, (15) performed 
automated M&V analysis on 48,000 buildings with a range of different end-uses and found that only 29% of all 
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office building models met standard performance criteria. There are likely multiple reasons why so many of the 
building models failed, including for example the presence of onsite generation, unaccounted for non-routine 
events and, data and measurement issues. Undoubtedly some of the buildings could not be baselined because 
they lacked a key independent variable that would explain significant variability. For industrial sites a production 
related variable may be critical. Some automated M&V tools allow for the inclusion of a generic production 
variable, though some intervention by the tool user is likely to be required.  For other sites the variability may 
never be able to be plausibly explained in the context of an automated approach. This variability could be due 
to, for example, occupancy pattern variability which is a function of human behaviours or site operation patterns 
that are not able to be characterised using the simple model, for example shutdown periods aligned with school 
holidays or other ‘non-standard’ periods.  

In some cases, variations caused by human behaviours may ‘smooth out’ in the limit of larger sites with many 
occupants. For others they may not due to correlated behaviour patterns (for example, many occupants depart 
a workplace at the same time but with an irregular pattern subject to some external driver). Indeed, the above 
referenced study found that the percentage of office buildings that had a valid baseline model increased to 68% 
specifically for large office buildings. As reported by Liang et al. (48), adding a binary occupied/not occupied 
dependent variable does not usually avoid this problem because; i) time variables already effectively account for 
occupied status, ii) a binary occupancy indicator gives no information on the number of occupants, and critically 
iii) the presence or not of occupants does not provide any insight into the energy use behaviours of those 
occupants. 

Residential buildings are likely to be particularly problematic for automated M&V2.0 methods due to greater 
energy use variability driven by irregular occupant energy use behaviours. Perhaps partially for this reason most 
M&V tools are geared toward commercial and/or industrial M&V (1), and most studies in the literature have a 
similar focus. However, it is important to understand the likely applicability of automated M&V methods in 
residual applications. Thus, in the next section an analysis of the application of M&V to NMI data from 300 
residential building is described. 

5.3.1 Analysis of residential building baseline models – overall performance 

Approximately 3 years of half-hourly electricity meter data from 300 residential dwellings across the Ausgrid 
network in NSW was obtained from the Solar Homes project (49). Although these homes had solar PV installed, 
they also had gross metering allowing the solar generation to be excluded from the M&V analysis. In addition, 
the controlled load circuit (if present) was also separately metered.   

Automated M&V analysis was performed using the daily analysis model applied to the consumption data only 
for cases with and without the controlled load circuit included. Ambient temperature data was obtained from 
the BOM for the nearest automated weather station based on the supplied dwelling postcode. The baseline 
models were trained using 1 year of data (1 July 2010 to 30 June 2011) and used to predict for the following year 
(1 July 2011 to 30 June 2012). No known interventions occurred during the baseline and prediction periods. 

Summary baseline model metrics are given in Table 8 for cases with/without the controlled load included. In 
both cases, only 25% of the sites met the CVRMSE criteria based on the daily analysis model. Overall metrics are 
marginally better when the controlled loads (CL’s) were excluded. Potential non-routine events were identified 
in two-thirds of sites and with CL only 11.3% of sites passed all model checks. 
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Table 8 Summary of baseline model metrics from M&V analysis of 300 residential buildings 

Metric Percentage of all sites 

Controlled 
load included 

Controlled 
load excluded 

CVRMSE < 25 25% 25% 

No seasonal trend in residuals 100% 100% 

No outlier days in savings 90% 89.3% 

No time trend in residuals 65% 69.3% 

No potential NRE 32.7% 29.7% 

No over-estimated months 18.3% 13.7% 

No under-estimated months 12.7% 11.7% 

No seasonal trend in savings 11.3% 13.0% 

 

Investigation of the sites with the worst performing baseline models provides further insight. Figure 9 shows the 
daily consumption data, cumulative distribution of consumption and daily model residuals for the site with the 
highest (worst) CVRMSE of 89.0. For this site, consumption displays very high irregular peaks close to 10x the 
mean consumption in summer and winter. This is consistent with a high air-conditioning load that is used 
intermittently and that is not very well correlated with ambient temperature, binary occupancy status or day of 
the week (i.e., is likely to be linked to occupant behaviour). 

Figure 10 shows the same plots for the site with the second worst CVRMSE (87.2). For this site, there is a period 
of several months where consumption is near zero, most likely corresponding to the occupants being away. It is 
also apparent that the periods prior and post have different consumption patterns (both mean consumption 
and variability). Residential buildings are inherently more prone to these types of changes to consumption as 
the behaviour of occupants in a single dwelling is generally more variable than those in commercial sites. Using 
a long-time interval model such as a weekly model may alleviate these issues by averaging across behaviours that 
can change from day-to-day. 
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Figure 9 Daily energy residual (top): consumption (bottom left), and cumulative distribution of consumption (bottom right) for 
the site with the worst performing baseline model 
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Figure 10 Daily energy residual (top): consumption (bottom left), and cumulative distribution of consumption (bottom right) for 
the site with the second worst performing baseline model 

5.3.2 Identifying difficult to baseline sites quickly 

It is important to be able to identify early if standard M&V models will not be appropriate for a particular site, 
both to avoid unnecessary project costs and unreasonable expectations, and also to provide the opportunity to 
redesign the M&V approach and potentially incorporate additional independent variable measurements.  

Notwithstanding the fact that non-routine events can occur at any time, potentially invalidating a baseline model 
approach, it is of interest to understand the extent to which models trained with a small quantity of baseline 
data provide a good estimate of the uncertainty of models trained with a longer period of baseline data from 
the same site. For example Gallagher et al. (41) compared CVRMSE for models trained with 3, 6, 9 and 12 months 
of data for a single industrial site and found that the CVMRSE values calculated from the models trained with 
>=6 months of data were very close to those calculated from the model trained with 12 months of data. 

He we expand this approach and consider a random selection of 100 of the residential sites used in the previous 
analysis. The interval analysis model was re-trained progressively using between 1 and 12 months of data and the 
resultant CVRMSE compared with that from the final model trained using 12 months of data. Here the CVRMSE 
was evaluated for the training data as opposed to a different testing data set, since we assume that in practice, 
only the training data would be available to perform the evaluation in real-time. 

Results are summarised in Figure 11. Here contour lines show the fraction of the 100 buildings where the absolute 
difference in computed CVRMSE is less than a given amount for the model trained with a certain number of 
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baseline data days. For example, the red cross indicates that for 70% of sites the baseline models trained with 
90 days of data have a CVRMSE that is <+5% more than the CVRMSE of the models trained with 365 days of data. 
Differences are skewed toward positive values corresponding to the CVRMSE generally decreasing as the 
amount of training data increases. These results suggest that, in general, only a relatively small amount of data 
is required to identify whether a site baseline model is likely to meet performance criteria (though of course site 
energy use could still substantially change at any time in the future).  

  

Figure 11 Difference in CVRMSE for model trained with fewer days compared to model trained with 365 days. Contours show 
cumulative fraction of buildings with difference below a given level 

5.3.3 Summary & recommendations 

• A significant portion of sites may not be able to be baselined using automated M&V tools, particularly 
with high resolution (i.e., hourly or daily) models. This is more likely for sites where behavioural effects 
are present, for example residential buildings, but may also occur for sites where other (unaccounted 
for) variables play an important role (for example industrial sites with production related energy use).  

• Schemes designed around automated M&V workflows should enable rapid/low-cost determination of 
whether or not a site can be baselined (i.e., ‘fail fast’) to avoid unreasonable expectations and/or wasted 
resources.  

• M&V baseline models can be re-trained periodically with smaller amounts of data and the standard 
performance metrics used to identify difficult to baseline sites early in the process. 

• Including a production related independent variable to the standard model formulation is a simple 
modification that would add flexibility particularly for industrial M&V applications. 

 

5.4 Assessing model accuracy 
Calculating uncertainty in computed savings estimates is a critical part of an M&V analysis and relies on being 
able to quantify the uncertainty in the baseline model. Typically, model uncertainty is assumed to be much 
greater than the uncertainty associated with measured quantities such that the latter are ignored (7).  

If the uncertainty range for the calculated savings includes zero, then it is not possible to state that there is any 
saving at all at the given confidence level. The importance of characterising uncertainty was underscored by 
Gallagher et al. (50) who applied a range of different models (linear, non-linear, machine learning) and analysis 
intervals (15min, hourly, daily, monthly) to industrial building M&V. They found wildly differing estimates of mean 
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savings, though, thanks to the relatively wide uncertainty ranges, most of the estimated uncertainty ranges 
overlapped.  

Different methods are used to quantify model uncertainty including standard error estimates from the 
regression models, the ASHRAE 14 fractional saving uncertainty approach, cross-validation and boot-strapping. 
One of the key difficulties for hourly and daily models in particular is that the standard OLS (ordinary least 
squares) error estimates are biased due to autocorrelation of the residuals. That is, as sequential energy 
estimates are correlated, so too tend to be their errors. This issue has been explored by several authors (51) (50) 
(14) and is stated to result in the true uncertainty being under-estimated by standard methods. The ASHRAE 14 
guideline includes a correlation factor to account for auto-correlation in the residuals, however Koran et al. (51) 
state that this correlation factor may over-estimate the influence of autocorrelations. 

One approach to uncertainty quantification proposed by several authors is k-fold cross-validation (CV). As 
outlined by Travis et al. (52), this consists of dividing the baseline period into k ‘folds’ (typically 5 to 10) with the 
model trained on k-1 folds of data and the remaining data used to evaluate the model error. This process is 
repeated k times and the resulting error estimates averaged. Touzani et al. (14) compared CV with the ASHRAE 
error formation (with adjustment for auto-correlation) and found that while both the CV and ASHRAE methods 
tended to under-estimated uncertainty, the ASHRAE approach was closer to the true uncertainty (the true value 
was within the uncertainty range 71% of the time where the expected percentage was 95% based on the chosen 
confidence level). Granderson and Price (53) used cross validation to assess performance of five different models 
across 29 sites. They report that baseline model uncertainty does not necessarily decrease with a longer training 
period because the building’s energy behaviour changes from week to week. 

Another approach is bootstrapping. As outlined by Koran et al. (51) this consists of repeatedly resampling the 
data (with replacement), computing the key statistic on the sampled data, and then evaluating the variance 
across the samples. As for CV, bootstrapping has been applied with mixed success. For example, Koran et al. 
found that the simpler OLS and ASHRAE error estimates were close to those from three different bootstrap-
based approaches for a particular example case with real data but were significantly different for several 
synthetic data cases. Variations to the standard boot-strap approach were described to account for 
autocorrelations and independent variable relations but were more complicated to implement. 

5.4.1 Summary & recommendations 

• Calculation of uncertainty bounds for savings estimates in M&V analysis is essential to establish whether 
or not savings are likely to be real or a model artifact. 

• Model accuracy does not necessarily increase with longer training data. A decreasing model accuracy 
with longer training period may indicate that the site’s baseline energy use is changing, that there are 
unresolved NRE’s, or that the model does not capture the site’s energy use variation accurately. 

• Auto-correlation of residuals is likely to have an increasing influence on computed uncertainty bounds 
as the base time-interval of the model reduces. Methods to account for this correlation are approximate 
but are important to include. Because of the danger of over-fitting and the difficulty of computing 
uncertainty bounds, it may be useful to compare estimates from models employing a range of base 
time-intervals.  

• Several approaches can be used including ASHRAE formula, cross-validation and bootstrapping. Studies 
in the literature are mixed when it comes to the relative accuracy of the computed uncertainty bounds 
computed using these methods. This suggests the simpler approaches (e.g., ASHRAE method) may be 
preferable in the medium term. 



Automated M&V2.0 Current status and challenges  |  31 

6 Conclusion 

The value proposition offered by Advanced M&V or M&V2.0 based algorithms is centred on the union of data 
gathering, data cleaning & processing, model construction, savings estimation, and uncertainty quantification 
stages of the M&V processes in a single workflow or tool that can be re-run on-demand at any stage of the 
process. The ability to offer additional insights from the high resolution, interval metering data is a ‘nice-to-have’ 
but is not the central benefit, and indeed in some cases more reliable savings estimates may be derived from 
models based on integrated or aggregated interval metering data.  

Although further work is needed to automatically handle cases where data, or models deviate from the expected 
behaviour (for example handling of non-routine events and difficult to baseline sites) existing approaches are 
available and sufficient to identify when these deviations occur, even if methods have not yet been developed 
to automatically handle them.  

The detailed design of such automated of semi-guided processes is closely linked to the requirements of the 
scheme, regulation or user driving the particular M&V implementation. Hence, it is suggested that the next stage 
of work focus on developing detailed ‘user-stories’ and workflows that define who will use the M&V2.0 tool, how 
they will use/interact with it, what inputs can be supplied and what it should produce or output. These inputs 
can be used to direct algorithm development efforts, which can in turn feed back into the user-centric design 
process in an iterative manner. 
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